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1. I .  J n t r o d u c m  

In recent years  considerable work has  been expendc-d on the prabfcrns of 

trajectory analysis  and guidance theory for contiriuousfy-thrustin(l space  

vehicles. The main problem in these a reas  is the determination of the soiu- 

tion to ti vector two-point boundary value problem. Since tho u s u d  problem 

is highly nonlinear most of the solutions have been numerical. While  the 

numerical solutions a re  valuable, analytic sclutions a re  needed for a complete 

understanding of the problem. Hence, the need ex is t s  for opproxirncte anslytic 

solutions to such mission oriented problems as interplanetary transfers, 

planetary escape  trajectories, etc. It is anticipated that the abundance of 

available numerical solutions can be used as  a guide i n  the  determination of 

the desired analyt ic  solutions. 

Based -primarily on t he  work of Poincare ’*, investigators in  celest ia l  
i 
i 

- 1  . mechanics and atomic physics have obtained both qualitative characteristics 

and approximate analytic solutions to many nonlinear problems by application 

of various canonical perturbation theories. Since the  differential equations 

which describe the optimal trajectory problem can  be represented as a 

L 

Hamiltonian system of differential equations (i. e. , the 

* BH * a H  

ax, 
equations x -- 

fitions which define the  optimal 

. I  - %Xi ’ ’i = --- 

+Numbers refer to the l is t ings i n  the Reference section. 



e ccw analytic information for various c l a s s c s  of problirit:;. 

In Part I of this report, the basic theory of Hamiltonian systems rccluirc4 

in trajectory analysis and guidance theory is presented. The treatmetit wi l l  

proceed from the  general concepts to the theory most used i n  applications. 

The theory has largely been drawn from Wintnor , Siege1 , Goldsteln4, Gol i<%r~i  

6 and Fornin’, and Born . 
2 3 

In  Part 11, solutions to generalized Hamilton-Jacobi equations when thrust 

is zero a re  obtained in both polar and spherical coordinates. These solut!ons, 

which c a n  be used as closed-form solutions to the invwse square yravitattonal 

field coast-arc problem, a r e  then treated as base  solutions for a canonical per- 

turbation theory. In the planar c a s e ,  the perturbation equations a re  developed 

for a continuously thrusting vehicle. 

Before turning to the discussion of the basic elements of canonical 

transformation theory, a few remarks on  the notation used in the subsequent 

developments a re  in order. 

(1) Matrices which are not vectors will be denoted by capital  Arabic letters,  

e.g.# A , M , N , J ,  etc. 
T (2) The transpose of a matrix, s a y  A, will be denoted by A , the inverse 



with rcspcct  to the vector x will ba represented as a colurna v e ~ i t i r ,  

1. 2 Mathematical Preliminaries 

In this sect ion some bas ic  concepts and theorems from algebra and 
. .  

analys is  needed in the subsequent discussion will be presented for e a s y  

reference. 

1. 2A The Implicit Function Theorem 

The majority of the transformations encountered in  Hamiltonian systems 

are nonlinear, so it is necessary to know the points in  the region of interest 

at which the trsnsformations a r e  defined. Furthermore, s ince  implicit 

functional forms will be encountered, frequent use  will be made of the fol- 

lowing well known theorem. 

7 j m d i c i t  Functlon Theorem : Let  fi(xr, .. . , xn, yI, . . . , ym’ 

, n) be n functions such that  there exists a point 

. , xn8 y1 , . . I y,), in the domain of t h  definition of the 
0 0  0 

1 Further, assume that each  of the  f a re  of c l a s s  C (i. e. the ff 
f 

and their partial derivatives with respect to each  of theIr arguments are 



system of continuous functions 

which sa t i s f ies  both xy= Oi(y1, . . . , 
(i = 1, . . . , n); and 

exist in some region, are continuous the partial derivatives - 
functions ofty 

the  equations : 

x = o i ( y l ,  . . . , y m )  (i = 1 ,  . . . , n) 

yo)Gnd fi[ @(yo), yo] = 0 
0 

nr 

a** 
a Y j  

y ) in  this region, and can .be found by solving 
1 '  * . . I  m 

l i i  

I .  2 B  First-Order Partial Differential Equations 

This report is mainly concerned with one- partial differential equation, 

1. e. , the  HamiltonYJacobi equation 

- BS c H(x, - a t )  = 0. -at ax 

Since the  dependent variable S appears  only a s  a derivative in  this  equation, 

t h e  forthcoming ane lys i s  will likewise be concerned with first-order equations 

which contain the dependent variable only through i t s  derivatives. In the fol- 

lowing discussion,  two methcds for the solution of first-order partial differential 

equations a re  presented: the separation of variables method and the method of 

characteristics. Intimately related to these methods i s  the theory of Pfaffian 

systems,  which is also discussed.  

and theory can  be found in  Refecences 3 ,  9 ,  and 10. 

E. 1 
i I 

More comFlete descriptions of the methods I 

t 
1 

Consider a general first-order partial differential equation of the form: ' 1 



It wili be convenient t o  introduce the following definition: 

( i  = 0, 1,2, ...) n) as 
1 a x  * 

p. 5 - 
i 

Then Equation (1) becomes 

F(x0’ x1# * * * a xns PO, pls  - a P,) = 0 * (2) 

.. 
Definition I. 2 2  ’A differentiable function S9;(x0, . . . , xnl a l ,  . . . 
where the  set 

is called a solution of Equation (2) i f  

a m ) ,  

{ a l ,  . . . a~ } cons is t s  of m s n  + 1 independent parameters, m 

as* . . . . I  -) E O .  as* F(x,,. ...) x - 
n’ axo a “n 

Definition I. 2. 2: A solution 

of Equation (2) which depends on  (n+ 1) independent parameters 

l a  a2S 
{aIr . . . a o A 3 is called a complete solution if the matrix [ - n’ a Xia aj  

with f = O a  . . .. n ; j = 1, . . . , n, h a s  rank n. 
- 

Since the dependent variable S enters  Equation (2) only through its 

derivatives, the  additive constant  A in the  above definition has no effect 
.1 

on Equation (2 ) .  Therefore, this constant will be neglected in further dis-  

cuss ions  and it will be said that a complete solution of Equation (2 )  depends 



I 

j 
-I 

The methGd of separation of variables is most useful a s  an  "inspection" 

ethod although necessary conditions for a n  equation to  be scparable can be 

developed (e. 9.. see Reference 11). 

cussed  rather than the formal development of the necessary conditions for 

The inspection properties will be dis- 
t 

i 
separability s ince  one usually employs the method of characteristics i f  a 

separation of variables is not possible. i 
I Suppose that, by inspection, Equation (2) can  be written in two parts 

so that one of the  parts contains, at most, one of the  independent variables, 

s a y  x and its associated partial derivative p * I' i '  

where g a n d g  are  n-vectors which do not contain x. and p . Then. 
1 j 

(3) 
Y N  

FI(XI* Pj) = F Z h  PI. 

Since Equation (3) must hold for all value 

domain of definition, a s sume  that  there exists a solution of Equation (2) of 

(xes x . . . , xn) in the 1' 



arbitrary variation i n  any one of the variables (in particular, x . )  does not 

affect t he  other variables. Then, 
1 1 
t 

F (x. + 6 x '  P.(x. + 6x 1) .= FzGl 
1 1  1 1  1 i 

! 
f 

This condition implies  i 
1' F (x pj) = F (x. t 6 x  

1 j' 1 1  j ' j i  

1 j '  1 

p (x. + 6xj)) = constant E A 

can be used t o  solve for Thus, the equation F ( x  pj) = A 

P~ = P ( x ,  A l l  = - a x  ' I 

. .  . %SI 
j 1  

-It  then follows' that  

, The s a m e  procedure m a y  then be applicable to  Fz, i. e., there may 

ex is t  an.  5 { x f such that 

J I : *  
F3fxk. Pk) ' F,(X, PI - A 1  = 0 , 

where F $. F4 I F2 and the (n- 1)-vectors 2, $ d o  not contain x or xk. In 

fact, the procedure may be applicable n times, in  which c a s e  the n con- 

s tan ts  necessary for a complete solutian of Equation (2 )  will then be defined 

and the  determfnati 

terms of the form 

3 1 

. . . , Am)dxi. (m 5 n) 

---- 



Equation (2) has been reduced to quadrature. Evcn if all n constants far  

the complete solution cannot be obtained by scparrtion of variables, the 

attempt should be made to obtain a t  least  a partial separation of variables 

and then apply the method of characteristics. 

&lethod of Characteristics 

Every first-order partial differential equation can be represented by 

a system of ordinary differential equations which is called the characteristic 

s y s t e m  for the partial differential equation. The characteristic system for 

Equation (2)  is 

Note that i f  one lets 

then the first two sets of equations become Hamilton's equations. 

6, F, x , p 1 I it, H, xi# k 1 i n  the  above equations, 
f i  i 

Thus, in a 

dynamical system, Hamilton's equations are the characterkstics for the Hamilton- 

Jacobi equation. 

In solving Equation ( 2 ) ,  the method of characterist ics is used most  
-_-- c 

_I 

effectively in conjuction with the method of separation of variable's. Th 

I -- - - -  I- 



F*(xkt ... X P I ... , Pnt J$, ... , Rk) = 0. (7) n k  

k - 1 ’  Note that I t  is assumed, wjthout loss of generality, that ( x  o ’ .  . . , x 

Pol .. . I f have been eliminated from the partidl differential equation 
- 1  

by substitution of the constants  {A1 , . . . , 4;). Equation (7 )  is then a pdil idl  

differential equation in  n -k+ 1 variables instead of n +  1 varidblcs, a s  is 

Equation (2). 

The characteristic system for Equation (7) is 

(i = k, ... , n) dpi  a w  - = - -  
ax, dT 

Then only n -k constant  relationships must be found i n  the first two sets of 

Equations ( 8 )  i n  order to have the necessary number of constan?s for a complete 

is not possible to obtain the  necessary n - k const 

tionships from the characteristic system, then one should find as  many as 

possible and then go back to the  separation of variables method and so o n  



J~cobi  thcmry is that only n constants Of fhe motlon must he fourid Ly ixltc ;rdtj :.:. , 

whereas t h e  solution of Hamilton's equations requires 2n integrations.  Thus, 

when the complete solution to the Hamilton-Jacobi equation has been determined, 

the remaining n constants of the motion can  be simply obtained by differcntintio:?. 

Pfa ffian Svs t em s 

If some of the constants for the  complete solution of Equation ( 2 )  are 

found by application of the method of characterist ics,  i t  is likely that some of 

the partial derivatives, - as will 'be of the fur'ctional form ax i 

as may or may not depend on x -. Consider, for example, the i where 

solution form of Equation (9). The total  differential of S is 

. axi 

(1 0 )  

Thus, to determine the  solution S, Equation (IO) must be integrated. The 

integration of the first summation of terms is straightforward, but the integra- 

tion of the  second summation of terms is not s ince  the coefficients of the dx rn 

may be functions of other variables than x This integration problem has  been m' 

investigated in the literature and is usually called the  Pfaffian problem. 

9; The expression C G (x Definition I. 2.  3 

Pfaffian differential form in N variables; the differential equation 

n c 
_y 

x )dx is called a 
i i ' * * * *  n i  

' f = l  



fs celled the P&ff differcntial equation. 

With respect t o  Equation (10) and the above definition, i t  follows ttiCtt 

a Pfaff differcntial equation of the following. form must bc integrated 

n 

m = k  
dS\5 - G Rm(xk,. . . , xn)dxm = 0 ,  0 1 )  

where Rm(xk,. .. , x ) 5 - as* . In order to determine the generating function 

S, the solution to Equation (11)  must be obtained. For cascs where Equation 

(11)  depends on more than two independent variables (including S*), there 

does  not exis t  a general integration theory . 
t i m e s  be found by inspection of the functional form of the equation. An 

n axm 

9 However, integrals c a n  some- 

important example is the following: suppose Equation ( 1  1) contains a term of 

the form Rm(%)dxm, where does not contain x Then S* m u s t  be of m' 

the form 

S* = R,E)xm + SI($) . . 



i s  dlso a function of x . But ,  by hypothesis, t h i s  is riot t r w .  m so tlwn 

Thus, S* c a n  contain x only in the product form m Rnixrn* 

I. 2c: (:roups 

As will be shown later,  t he  class of canonical transforn:atlons can bc. 

The definition and some simple properties of a group 

For a more complete presentation, see References 12  

represented a s  a group. 

will now be presented. 

and 13. 

pefinit ion . 2. 4: Let G be a nonempty set and- ". " an  operation defined 

o n  G. The set G is called a qroup with respect t o  ". " i f  

(1) for each  a r b €  G, a be G; (closure) 

(ii) for each a , b , c e G ,  a * ( b * c )  = (a.b).c; (associativity) 

(ifi) for each  a E G there exists e r  G such  that  

a * e  = e a = a; (identity) 

(fvl for each  a E G there  exists xt  G such that  

8 .  x = x. a = e. (inverse) 

Properties of Groups 

G. 1) The identity, e ,  of a group is uniaue. 

G. 2) For each a t  G there exists 

(G.3) If a , b , c c G  and a * b  = aoc,  tnen b = c. 



(G. 5 )  I f  a,  bc C, then there exist clctmrrts p ,  (1 c G such that 

-1 -1 a * p  = b and q e a  = b. In fact, p = a qb and q = b . a  . 
(G.6)  If a , b e G ,  then ( a - b ) - l  = b-’*a-’ .  

Definition I ,  2.  5: A nonempty subset K of a group’ G is called a suh i rou r s  

of G if: 

ti) a,baK 4 a . . b 6 K :  

(ii) ar  K + 3-l  r K. 

1.2D Svrndectic Matrices 

Before defining the symplectic matrix, the concept of the canonical 
. -  

matrix (and its properties) must be Introduced. 

Definition I, 2. 6: Let I = n x n  identity matrix and 0 * =  n x n  zero matrix. n n 

I 

. P  

i 
t 

Then the 2n x 2n matrix 
1 

. J  f 

i s  called the canonical matrix. 

WDerties of the Canonical Matrix, 

I2n’ (C. 1) J’ = - I ,  where I f 

hf: By straightfarward multiplication. 

3 is nonsingular, Le., 1 JI # 0. 

prsef: By (C. 11, ? = -1. Then, since the  determinant of a 

duct is the  product of the  determ!nants. 

I J l  = 1-11 * (-1)‘” * + 1. 



(C. 3) J-' = -J. 

-1 2 -1 -1 
_I Proof: By (C. I): J (J ) = J ( - I )  = - J  . But, also: 
-1 2 I ( J  = (J% = 11 = J. 

-1 
.*. -J-' = J -+ J = -J, 

Definition 1. 2.7: Let M be a 2 n x 2 n  matrix. The matrix M is said to  

be syrnplectic i f  

T M TM = PJ, 

where p is a nonzero scalar  constant. 
I 2 (Note: Siege1 and most other texts d o  not include the constant p in  their f 

i 
t 

definition of a syrnplectic matrix. However, the purposes of this  report a re  

1 best served by using the above definition. Also, Wintner u s e s  the condi- 1 
1 

T t ion MJM = pJ instead of the one given abdve. But, as Wintner shows 

o n  page 26, the two conditions a re  equivalent. ) 

Some important properties of symplectic matrices will now be presented. 

In  this development, M will be assumed to be a 2nx2n matrix and J will 

be the canonical matrix. 

ProPertv I. 2. 1: If M is syrnplectfc, then 

By the  definition of a symplectic 

matrix: 



:. I M( = *p f 0 ,  since p is nonztr3. 

t 
Prn,?z!y 1. 2. 2: The  inverse of a syrnplcctic matrix M i s  given tiy 

-1  1 T  M = - -  JM J. 
P 

_I_ P r w f :  By definition, 

thls equation on the right with M-', 

MTJM = pJ s ince  M is symplectic. Opcratc on 

so 
- 

M ~ J  = ~ J M - ' .  

Operate on the left with so 

Now I t  will  be shown tha t  the class of symplectic matrices forms a 

group. The closure property whtch 1s a result of th l s  fact 1s very important 

In applications. 

&OPt?rtY 1. 2. 3: Let s be t he  class of symplectic matrices of order t n x 2 n .  

Then, S is a group wtth respect  to matrix multiplicatime 

$!nee the product of two matrlces of order 2nx2n ts 8 2 n x h  

maW%, one need only show that for each MI, M2 f S that the prrxfuct MZMl 

1s symplccttc matrfx (i. e. to sat isfy closure). Slnce both MI, M2 S, 
T T M i l M y  = pIJ and N2JMr = )r J. Solving for J 2 



{M &I ) is symplectic. 
2 1  
The associdtive property of a ,group is immediately satisfied since 

matrix multiplication i s  associative in general. 

The identity property is satisfied by M Z I ,  i .  e. , 

. .  
T I JI  = J and MI = IM = M. 

Finally, consider M-’ as  the inverse 6; M (by F’roperty I. 2. 1 ,  

M exists). Clearly MM-I. = M M = I, so one  need only show that 

M- lc  S, i. e. , 

then (M ) .= (M ) , so 

-1 -1 

-1 T 

-1 T T’ -1 

(M ) J M-’ = pJ. From matrix theory, if I M I # 0 



. The main prob!cm in trajectory analysis  and guidance? theory is the 

integration of t h e  equations of motion and thk Euler-Lagrsngc rqtiaiions. One 

can equivalently describe the  given second-order system of ordinary differcn- 

t ia l  equations by a system of first-order ordinary differential equations in t’lc 

Hamiltonian form. Throughout this  report, the following definition will be 

used for a Hamiltonian system. 

Definition 1. 3. 1: Let x and A be n-vectors and t bema scalar. The xi ’ 

will be cal led generalized coordinates and t h e  A will be’ called generalized 

momenta. If there exists a scalar  differentiable function H(x, X, t) such that: 

i 

i 
dxi a~ 

i = d t  - ax, x - - - -  I 

are the differential equations describing a given dynamical process, then 

the  set {H, x, X 3 is called a Hamiltonian system. 

(Note: Notationwise, unless  s ta ted otherwise, the  variables I x ,  q, Q, p 1 

will represent generalized coordinates and {X, p, P, a ]  will represent gen- 

eralized momenta. ) I 
I. 3A The Definition and Necessary and Sufficient Condition 

Most  optimal trajectory problems are  not integrable in  closed form, 

so the system of differential equations which define the probjem are  usually- -- 

integrated numerically to obtain the  solution. However, there exis t  other 
€ 

alternatives. Suppose 2n independent constants  of the motion a re  known 

i 



algebraic equations. 

theory is to transform the given 

system of Hamiltonjan equa'40ns which is r e a d i l i  integrable. 

ular c a s e  of the Hamilton-jacobi transformation, the result is the equilibrium 

The fundamental objective of canonical transformation 

t e m  of Hamilton's equations into another 

In t h c  partic- 

solution (i. e., Zn constants  of the motion). 
7 

Definition I. 3.  2: Let (x(q, P, t), A(q, p, t)} f C" be a transformation which 

sa t i s f i e s  the conditions of the implicit function theorem. If for every H(x, A, t) 

there exists a sca la r  function K(q, p, t) such  that 

8K - -  
a% q i  - 

a K  p i  = - - ,  
a% 

( i  = 1, ..., n) 

then t h e  'ransformation is said to h e  canonical. 

Note that  the  word "every" is emphasized in the  above definition. 

The definition does not s ay  that  every transformation which preserves 

Hamiltonian form is canonical, but only those which preserve Hamiltonian 

form and are  independent of the Hamiltonian function. Thus. i f  a transfor- 

mation is canonical, it remains so for every choice of the  Hamiltonian. 

By adopting the  above definition for a canonical transformation, the 

following necessary and sufficient condition for a canonical transformation 

can be determined. 

Theorem 1.3.1: Let tx(q, p, t) 

. .  

L 

! 



D 

(i = 1,  ..., n) 

Let M be the Jacobian matrix of the transformation, i .  e . ,  

Then, in  matrix form 

S h x  the given transformation sat isf ies  the implicit function theorem, the 

inverse transformation exists, i. e. , { qfx, X,  t}, p(x8 



whore N i s  the 

N 

Jacobian matrlx for thc 

I 

inverse transforrratibn, I 1. e, , 

It  will be shown now that N = M-I. Substitution of Equation (1 4) into 

Equation (13) gives 

= MN [:] t M  

This equation must hold for &l Hamiltonian functions, in particular those 

independent of t ime.  Thus, 

I 
I 
l 

and 

[~ - = - M  ~] -+ [ ~ ]  1 - ~ - 1 ~ ]  

a t .  

_I- 

Since M - l  exists (M is symplectic) and s ince M N  = I, it follows that 

N = M . By PropertyI.2.2, N = M = - 
. -  

-1 
1 
I 

sse 

I 

-... ~ .-. - _ _  



Upon multiplication by J 

I 

1 
P 

- -  J ' M ~ J  

Since { H, X, X I  is a Hamiltonian system 

In scalar form Equation (15) becomes 

Define the function 



b 

t 

4 where - and R are called the multiplierand the E!nain,lr.r f:i!>no>-of thc  d 

a 

1 
P 

canonical transformation, respectively. Then, i 
f 
P - - -  a K  - 1 , [ a H j _  ax + -  811 5 8R 

n 
3 + -  BYi ' j = l  ax j ag i ahj  asi 

B K = - C [ a H _ l + I - - ] f -  1 

axj aPi api api ' j = 1  j i 

( 1 8 )  

a H  a R  n ax 
ax ap 

Substitution of Equations (18)  into Equations ( 1  6 )  gives  . 

1 
P 

In the definition of. K ,  given by Equation (i7), the term - H  is well- 

defined,but R is not. Thus, for K t o  be a Hamiltonian function in  the 

(9, p f-space, it must be shown that there exists a function R(q, p, t)  



i Thus ,  to complete the sufficiency proof, i t  niiist be st1uc.n Zhat ttwrl* 

oxlsts. a solution R ( q ,  p, t )  to Equations (20) (no te  that the solution oced a 
not be unique!. In rndtrix form, Equations (20)  .can be written as  

= J [~ 
8 t  

.. 
or 

= J [ j  
Note that the left-hand side of this equation is a gradient. Thus, a solution 

of  Equations (20) exists if the vector 

& 
B t  

B t  

J 

fs a gradient. Since {x(q, p, t), k(q8 p, t)) is assumed to be of class 

C then the functions { 
2 8q 84 bJ& BP 

8 . . --PI are of class $ B t  8 t  B t  I”” 

and therefore the following relations must be true 

P - - r r . . r c F 1 - w  -*-em. C”7..FR--+.-m- Cr.lcl-r * ** r- *-- 
- 



To case the notation, let the two sets of variables be denoted by 

{ X 1 , . . ; , X  2n 1 5 { x  ,,... , x  n , A l l . . . ,  'n) 

i Z Z )  

and let 

represent the given transformation and its inverse, respectively. Then, in  

summary: s ince  [ - ] is a gradient of class C1, Equations (21)  must be 

satisfied. Thus, if there exists a solution R(Q) of Equations (20), then 

a R  
8Q 

J[ a t ]  must be a gradient of c l a s s  C1 , which implies that a i %  (8 a t  1 f is 

a symmetric matrix. It will be shown that  this is indeed the case.  

By expanding each  s ide  of the  following equality it is readily 

Anoiher convenient representation is given by the  following lemma. 

. a %  
Lemma 1: -[ 1 = E N - I ,  where N is the Jacobian of the inverse * a Q  a t  



2 used t o  form a function of fQ, t f again. Since + ( X ,  t )  C , i t  foil,>r*J:; 

by the chaiq rule that 
i 
i 
i 

is  a function of 19, t l .  But, N E &k , so upon substitutton a! 
a t  8X 

since- 

in Equation (241, the following expression is obtained 

BN=a [ u] N. Bt a q  a t  

Then, since N-’ exis ts ,  f 
( 2 5 )  

B [ &] = aNf-1. 
BQ a t  a t  

The representations of Equation (23) and Lemma 1 then give 

8 3fit 8N. N-l - { J [ a t l l  aQ J*z 
BN. N-l Thus, the problem is now ta show that J. - . a t  

(26) 
=. N -1 ] T - - J. E . N - ’ .  

1 a t  

nce by hypothesis M is symplcctic , it’follows that N is . 

since N = M-’ and the symplectlc matrices fo 

---- -* ,u1--4 - ..a e. *-- --.rum-- -om---- 

f 



€ 1 

*r 1 1 Thus. N JN .f; -- J. Since - J is just a matrix of eonstaats, I t  fo l l c tw: ,  I-r r . ,  t 
f that 
f 
t 

or 

Since J is skew-symmetric, ? = -J so 

8N T T %N . -(E) J N f N J E  = 0. 

-1 T -1 Upon multiplication by N first on the right and then (N ) on the 

left  leads to the following expression 

-1 T a N  T T ON (N 1 (GI J - JC N-' . = .O*  

Therefore I 

T %I4 
- J f N'l] = J et N'l. 

BN which verifies the symmetry of J 

solution ___I- , RCq, p r  t )  of Equations (20), 

N - l ,  and thus, .there e+sts 8 

- ---- 

(Necessitv + )  Since rx(q, p, t )#k(q ,  p, t ) )  is a 

canonical, there exists a K ( q ,  p, t )  such that ( I ;  f i  # .  6 = - %* 
Bq 

It must be Gihown that M is symplectic (or, equivalently, that N i s  



Equations ( 1 4 )  can bo written as  

where 

=[:I .=[I 
onian system so 

Substitution i n  Equation (27) gives 

&It, H(X, t) = H[ X(Q, t), t 1 which implies (upon application of t3e 

. 



. ... -- . -  -. __.I 

I t  is given that 1 K ,  q, p 1 f IK,  QI is a Hamiltonian sys tem,  so 

a K  6 = J ag 9h ich  implies 

Recalling that J-' = - J (Property C. 3), 

8H 9 -1 a K  - = - JM-lJ (MT)  aQ aQ - - T a t  , 

or . .  

T where use  has  been made of the  matrix identity (M 

Then, 

-1 T 
= (M-') . 

The left-hand s M e  of Equation (30) is a gradient. It will now bc sh@wn . .  
that the  right-hand s ide  of Equation (30) is a gradient (for evsry Hamiltmian 

H) only if N is a symplectic matrix. 

Since Equation (30) must hold for every H-function, in  pax?icclar it 

must hold for H 9 0. Then, 

I 



ich in!plies that - J R, is a gradicnt with respect to Q. I t  t h e n  follows 

r3JI that JN JNT ( - ) m u s t  be a gradient. 

Lemma can be stated. 

aH is a gradient for every choice of H ,  aQ Lemma 2: If JNJN 

J N J N ~  = PI, 

On observing t h i s  fact, t h e  follvwing aQ 

then 

where p = constant ( #  0). 

T Proof: Let A f JNJN . Then A B  is a gradient. First, consider the aQ 
2n classes of Hamiltonian functions which are polynomials i n  only one 

Qic  {Q,, . . . , Q 1. Then, the following vectors a re  2n 

where 

A E  

gradients: 

, .  
a a a 

a a ... a 

1 , l  1,2 ' * *  f , 2 n  

2,2n 2 , l  2,2 . . . . . 
a a a .  

2n, i  2n.2"' 211.21 



functions B,(Q), . . . , B (Q) such that: 2n _ .  

(i = 1, ..., 21-11 (321 

.. 

Given a particular i c  {1,2,. . . , 2n) ,  Equation (32) can  be viewed a s  an 

integrable system of first-order partial differential equations with dependen: 

variable B Thus, the integrability conditions must be satisfied (i. e .  
1' 

a2Pi aZBl 
). This is equivalent to the requirement that  - = -  

aQjaQk aQkaQl 

(i = I,,.. ,2n) . 

- 

be a symmetric matrix. Thus, 

! 
for each i, I8 k = l , 2 , .  . . , 2n. Consider the  case i = k # j i  I 

i 

1 .c 

I 
{ 

1 

I 



I But, g ,  depends on only Q, and since i = k, f # k 

agk aa 
f l k  + a - *  

'k l * k  aQk 
aak,k g / O = -  
aQi aQk 

(33 )  

Suppose H(Q I is 'a first-degree polynomial in Q Then, k k' 

_ -  aH = constant + - agk = 0. 
aQk 'k = aQk 

Since Equation (33) must hold for all choices of H, it follows that 

or, 

Since g # 0 i n  general, then k 

Substitution of Equation (34) into Equation (33) then shows that 

From Equation (35) it follows that A must be a diagonal matrix, 

and then Equation (34) becomes 



w!,,ch implies either a a (Q ) or a = constant. 
k,k k , k  k k,k 

Finally, consider the  c l a s s  of Hamiltonian functions €1 = Q,Q, 

(i = 1 8 , . . ,  7n-1). 

a 1 ' 1  (Q 1 10, 

a (Q 1 Q, 2 ,2  2 

0 

0 

Then the  following vectors are gradients : 

I 

Again Equations (33) must be satisfied 

Q2n 

so operating on Equations (36) 



( Q ) = a  ( Q )  a2,2 2 3,3 3 

(Q 1. But the set 2n,2n 2n Thus, a (Q ) = a2,2(Q2) = ... = a 

{Q, , Q2, . . . , Q 3 is independent, so each of the diagonal elements 

1 , l  1 

2n 

must be the same nonzero constant,  i. e. , 

or  

- p* = constant. 2n,2n = ... = a  - a = a  - 
1,l 2,2 

Thus, from the above l emma 

N J N ~  = pfj-l = -p*j z pj 

Therefore, N is symplectic and the theorem is proved. 

The above theorem not only gives the important necessary and 

sufficient conditlon for a canonical transformation, but a l s o  a method 

for constructing the new Hamiltonian if one has a transformation defined by 

a symplectic Jacobian. Note that the definition of a new Hamiltonian is no 

problem i f  the traqsformation does not contain t i m e  explicitly slnce then 

R P 0. To this  end, the following proposition i.s considered. 1 
I 
I 

I 



, 
ProWs.ition; L e t  (IJ(x, h ,  t l l  x 

s y s t e m .  Then, 

I . , x , AI, . . . , h  } be a I~arniltonian 1 n n 

with €i t*  5 H t X and x = t is an equivalent Hamiltonian system 

which does not contain time explicitly, but has (n  t 1 )-degrees o f  f r e e d o m  with 

H*(x, h) as a constant o f  the motion. 

n t l  n t l  
f 

mf: For i = 1 ,  . . , n, no change occurs, i.e. , 

* aH* - _aH 
I x = -  - aH* aH 

axi * 
i = -Bx = - -  i ax, i ax, 

Now, consider t he  i equation: n + l  

But, 



or, 

d t H) = 0. 
dt  (‘nt  f 

Therefore, € I *  = H t X n t  is a constant of t h e  motion. 

Finally, consider the  x equation: n f  1 

a H s  = 1 = t + constant.  - -  - 
n +  1 a>. n t  1 X 

n t l  

= 0 when t = 0 .  Then, x = t ,  as  desired. Let xn t 1 n t l  

Thus, the two systems represent the same physical problem except that 
_ _  

with the new system only transformations between “comervative” systems 

need be considered. 

Same expositions o n  canonical transformations d o  not make mention of 

the  above necessary and sufficient condition; but instead s a y  that a trans- 

formation is canonical if  Hamiltonian form is preserved and that this is true 

i f  there exists a function F such that 

Presently, the motivation for t h i s  relation (which, physically, is a form af 

Hamilton’s principle) will  be shown. First, though, a simple example will 

show why the word “every” Is emphasized in the definition of a canonical 

transformation adopted in this report (I .  e. , Definition 1. 3. 2). 

Examole; Consider the following transformation m 



The Jcluobian for th i s  transformation Is 

M =  

B nd , hence, 

T M JM = 

0 1 l o  01 

'0 0 ;  o - l -  
0 0 1 - 1  0 

t 

I 

---- - - - -  
0 1 ' 0 0  

1 o ; o o  - 
Therefore, M is not symplectic. So, by definition, this transformation 

is not canonical. However, if the Hamiltonian is, 

H ( x ,  X,  t )  = x x 
1 2  

then, 

i s  a new Hamiltonian which sat isf ies  the requirements that the Hamiltonian 
-- 
- form be preserved. That is: . -  

. 
t -  ali = o 

ax1 

. P I -  
.c + 



2 
1' Ilowcvcr, if H = x then there docs not exisr  a nois l t , i i n i i t o t ~ ~ , ~ r !  

K(q, p, t) which prcscrvcs Hamiltonidn form under the givcn triln:.foim+ltion. 

1. 38 Gcncrdtins runctions 

Theorem I. 3. 1 yields a rncans for checking a given wansfstmotion 

Howcver, the theorem does not to  see if i t  is d canonical transformation. 

give a method for developing the transformation. 

will present nc thods  which can  be used for such a purpose. 

The forthcoming discussion 

Consider a Lagrange problem i n  the calculus of variations where the 

_ -  integral to be minimized is 

I =  

The function L(x, x , t) is referred to as a Lagrangian function and the 

equations (Euler-La grange equations) : 

(i = l , . . . , n )  

must be sat isf ied on a n  extremal. The following question is then raised: 

If L'tX, X, t) is the  Lagrangian in the  X-space where X = X(x), what 

is the  relation between L(x, k, t) and L'(X, i, t) i f  they are  the 

Lagrangian functions for the same physical process? The next theorem 

answers  this  question. 

Theorem I. 3. 2: Let X = X(x) be a nonsingular transformatior. and let 

L(x, x , t) and L' (X, X ,  t) be Lagrangian functions in thelr respecttvo 
* . . 

systems. If L and L,' differ at m o s t  by the  total  t i m e  

-1__1_ 



~ ^.---.-"-Tawy"xu 

r .  

derivolivr of some scalar lunction ( s a y  S), .then 1, and L' w i l l  tw 

Lagrangians for the  same cxtremals. 
z 
5 

Proof: By hypothesis, 

Lagrangians, then 

L = L' t - dS Since both L and L' arc d t '  _I 

6 fLdt = 0 ,  6 f L'dt = 0 

0 0 

Consider the problem defined by L. The extremals for this  problem are  

determined by the solution of the set of Lagrange's equqtions for L, 1. e. 
- 

'If it c a n  be shown that  the  extrernals for the problem defined by L' arc 

described by the  differential equations (38), then the proof of the theorem i s  
_I 

___._- - ~ _ -  
complete. Consider: .. . 

sf tf dS . $Ut - 6 ' s s d S  = 0 ,  , L'dt = 6 Jt (L - z ) d t  = 6 
tf 

S 0 0 0 r f  * 
6 

But, 6 JSdS = a [  Sf - So) = 6 [ cons tan t )  = 0 ,  so the extrernals -. for ! 
0 

the L'-problem are described by the differential equations which result from 

6 l t f L d t  = 0 (Le. Equations (38).). 

n strict analogy with classical 'mechanics ,  the definitio 0 

n 

1=I 
Hfx, X,  t )  E c - L(X4 G, t), 

-. 

I &/axi, Is the  Hamiltonian associat6d with tho 

lowlng corollary to the above theorem .,- 



nonslngular transformation q q[x). Delino Xi E 

( I  = 1, . . . , n) os tho goccralized momenta in ti?a two coardirrilte systctns. 

n 

i = 1  
where K 5 C pi{, - L' and S* is some sca l a r  function. 

Equation (39) rcprcsents a sufficient condition for a canonical 

transformation and is sometimes used as the definition for a canonical 

transformation s ince  it is very useful in applications. 

of Equation (39) is a consequence of the  function S* , which is called 

a generatincl furlction. That is, if S* I s  given as a function of n Of 

The usefulness 

the tx, AI-set and n of the {q, d -set, none of which a re  conjugate 

pairs,  t5en a canonical transformation is defined. 

BamtAe: Consider S* = c xiql and let { x ,  q 1 be the 2n independent 
n 

i =  1 n 
variables of the 4n variables {x,A, q , p I, Then, '$ = c (;pl +xi;  i), 

i =  1 
.. so from Equation (39): 

n n n n 
C li2, - H = C - K t qlGi + G X i t i .  

I =  1 i = l  i = l  i -  I 

Thus, from t h e  independence of'tha set Ix, q, t I ,  it fOilows that 



i t  takes the  old momenta into the new coordinates and the old CoriiOii'idtcs 

into the negative of the  new momenta. 

In some expositions on the subject of canonical transformations, it 

is sometimes implied that  there exist only four types of generating functions: 

S * t x ,  q, t ) ,  S * ( x ,  p, t),  W ( X ,  q ,  t ) ,  Sa:<(X, p, t). Actually the c l a s s  of 

generating functions is much larger and the following property is useful in 

appfica tions. 

Proposition: Let z .  E {x X. 1 and Zic {qi, pi)  for each  i = 1,2, .  . . , n. 

That is ,  neither two of the  old nor two of the  new variables c a n  be conjugate 

to e a c h  other. The problem is to find the conditions which define a yenerat- 

1 i' 1 

tioned above are  spec ia l  c a s e s  of th i s  procedure. The conditions which 

def ine the transformation associated with S( Z .  Z, t } are determined by 

Equation (39)  and the  following generating function: 

where it is convenient to define the  operator aAb as  follows: 

Use of the operator is illustrated i n  the  following exampie. 

Example: Assume  that  

~ x ~ " " ~ x n / ~ ~ x ~ n / ~ ) + ~ ~ ~ ~ ~  4k # P  4 . . . 8 P  n 1  



' .  
(x, X, 9 ,  p, t). By the above proposition: 

n n/2 

i=-+ 1 i = I .  
s* = S(2, 2, t )  t rn xixi .. c qiPi 

2 

Then, by Equation (39): 

n n .  d2 as; ~ - as f, 
n 

ax. i X i x i  - H = c piqi - K t C - 
i =  1 i.- 1 i = 1  i = ( n / z ) t l  1 

. nJz . '  . - c (SiPi+qiPi)' 
i= 1 

After cancellation: 

. . 
c -xrxi - 

i=  1 

as -4 
n 

- 2  

. d2 as . n 
H =  cn piqi - K + C i + 'n axi i 

i=-t 1 i=-+ 1 i = 1  2 

n . d 2  . 
xiAi - C qiPi as . n as - 

i = I  + ' GiPi * r n  i=-+1 
2 i= 1 

. This expression finally reduces to 

) G i  t (ql - - ) G i I  85 + ( K - H - a t )  8s I T  

d 2  
c mi - -  

1-1 a? 

*..- I- 

& -  



Then, since f x  *. . . 
is a n  independent set, the following conditions must hold: 

x dZI P* # e P d 2 '  4n/2 .t t . . . I q n /  ?dL?' . L x 

t 
1 

as 
i axi 

x = -- 

as K = H + -  a t  

Therefore, given any function which depends on the above mentioned inde- 

pendent variables, a canonical transformation is defined by Equations (42). 

In'applications use is frequently made of "simple" transformations 

L e . ,  some of the momenta are switched to  cqordinates (and vice versa)  

while the remaining variables remain the same. Another simple property 

is applicable. 

ProDosition: Let p E { x  A . }  for each i = 1,. . .*, n. That is, each of 

the  new momenta will be either an  old coordinate or a n  old momenta. 

i i' 1 

Then, 

n 

i = l  
S = C x i P i  XiAPi - Xiqif xiAPi 13 (431 

. -  
defines the  simple trans formaZion. 

Example: Consider the identity transformation, i. e. , pi = Xi for 

each i. Then, 

n 

*wm7J-.MIY--?v.- rlP-uIa=am---II*v'11 

- . -  " _- 



I 
Since t h i s  generating function depends on { x ,  p ) ,  tflc previoti:; 

proposition is  used t o  determine the conditions governing the  trdnt:forrridtion, 

Le., 

n n 
S 4  = S ( X t P )  i- C x ( X . A X  - C q.P.(P.APi) i i  1 i i = 1  1 1  1 i = 1  

Thus, Equation 

n 
s* = S(x,p) - c qiPi 

i = 1  

39) becomes 

n .  as  as - * .  n 
P i  -clipi I P . 4  .I. 

1 1  
- K +  C (-x t- axi i a p  i = 1  i = 1  i =  1 i piqi 

C Xixi - H = 

On collecting the coefficients of l i k e  terms this  reduces to 

Thus, t he  transformation is defined by t h e  following relations. 

= pi; 

S 

J. 3C The Hamilton-Tacobi Equation 

':he previous sect ion was concerned with the procedure for 

performing a canonical transformation when a gen ng function is given. 

-- -*-- --- V u -  

--e - -- - x _  



I 

In this scctiori attention will  bc given t o  the process of dcterrninincj the 

Qcncroting function. 

transformation can  be performed immediatcly. 

Once the  generating function is known, t h e  c'inonlcal 

Let t H ,  x a  A 1 be a given Hamiltonian system. If a canonical 

transformation to  a new Hamiltonian system where K E 0 can  be effected,  

then the integration problem will be trivial, i .  e. a 

qi = constant 2 p i * 
-i 

The Hamilton-Jacob1 theory has  a's its fundamental objective, .the definition 

of th i s  particular canonical transformation. 

Let {x, p, t} be the  subse t  of 2n+ 1 independent variables of 

the  set of 4n+ 1 .variables {x, A,  q,  p, t}. From Equation (40): 

. n  

i = I  %Pi*  
s* = S(x, p, t )  - 

Substitution of S* in  Equation (39) gives: 

. ,  

. .  



as = -  
qi aP* 

as 
a t  * 

K = H i - -  

(i = 1 , .  . . , n) 

Thus, for the important special  c a s e  when K z 0 ,  the third of Equations 

yields the Hamilton-Jacobi equation (H-J  equation): 

451 

461 

as 
where the first set of Equations (45 )  has been used to replace xi by - 

axi 
i n  the Hamiltonian. The H-J equation is a .first-order partial differential 

equation which is to be solved for the generating function S (  x, a ,  t) ,  where 

a i  s pi i n  the { KE 0, q.5 pi, pi: a )  -system. As shown i n  the following 
1 

important theorem, i f  a complete solution 0,  t he  H-J equation can  be de-  

termined, then a general solution to the original dynamical problem will be 

obtained. 

Theorem I. 3. 3 (Tacobi's Theorem).: Let S(x, a , t )  be a complete solution 

Of the H-J equation and { p 1 be a set of n arbitrary constants, where. 



( i  = l , . . . , n )  

_I_ Proof: Recall that the H-J equation c a n  be used to define a gcmrat ing 
F ?  

function, S,  for a canonical transformation from { € I ,  x, AI to { K - O ,  : i  

q s p ,  p r a )  where S is assumed to be dependent upon {x, P, t l .  Thus, 

the transformation is governed by Equations (451, i. e. , 

as x = -  
.I i ax 

( i  = I , . .  .,n) 

I 

8S 0 = H + -  a t  

Since S is a complete solution, it is a function of Zn independent t 

parameters {a 1, . . . 8 a 1, so t he  system i 
n 

BS - = Xi( x ,  a ,  t) ki 
8xi 

ti = I , . . . , n )  

represents 2n functlons of the  2 n t  1 varfa-bles { x ,  a ,  t 1. Further, _I 

.B 

8 % 
ax1aa s ince  S is a complete solution, it follows that 1 - 1 # 0. This 

allows the p -equations to be solved for the  x ‘s, i. e .  , x * =  xi(“ 8 8 8 t ) .  i f i 



represent a general solution of €he original Hamilton's equations. 

In summary then,  three equivalent formulations for the optimal 

trajcctory problem have been presented : ( i )  a set of n second-order 

ordinary differential equations (Lagrange's equations); (ii) a .set of 2n 

first-order ordinary differential equations (Hamilton's equations); and 

( i i i )  a single first-order partial differential equation (H-J equation). In most 

instances,  a system of ordinary differential equations is preferable to a 

partial differential equation. 

trajectory problem this  is not necessarily the c a s e  because of the elegant per- 

turbation theories associated with the H-J equation. 

However, i n  an analytic analysis  of the  optitnal 

Before discussing 

Hamilton-Jacobi perturbation theory, acother form of the  H-J equation (use- 

ful i n  conservative systems) will be given. 

. Suppose that  {H( x, X),  x ,  X I  is t h e  given Hamiltonian system, i.. e. , 

H does not contain t explicitly. Then, H is a constant of the motion: 

In this c a s e  it is sometimes advantageous to consider only generating 

functions which do not depend on time. Then from Equations (45) 

- 

c 

K = H. 



I t i . ; f r d  ~f s e t t i n q  E; 2 0 ,  Ict the r i c w  tIain,ltoniari lir: cntiy s p ~ c t f i t d  

f:irtction of tho new m01ricntr7, 1 .  e .  , K K ( p ) .  SIIICC t< 1 5  B f.Idn\tltorti.irr 

-m 
~ 0 f i -  4 

4, = 
BK - 

Thus p = constant = ai (i = I , .  , , n) and so i 

= 
q 5  8Pi 

= constant. 
- 

Hence, once again the integration problem is trivial and the l a s t  of Equations 

(47) becomes 

as 
ax H(x, -) = K(a) . 

A special  c a s e  of this  equation is 

8s 
H(xa = Q 1  # 

6 
which Born c a l l s  the Hamilton-Jacobi equation. 

1.4 Rasic Hamiltonian Perturbation Theory 

As it s tands ,  the  Hamilton-lacobi theory is elegant but it does not 

solve many problems s ince  it involves the integration of a Wrtial differential 

equation. Thus, o,n the  surface, i t  appears that l i t t le  i s  galned by converting 

(49) 



I 

obtained b y  thc appllcation of perturbation tlicorfes bdscd on I f w  11-1 

cquat ion. 

die madc. 

I n  thc theory which follows, no small-pardmetcr assi~mpt  io!is 

I f  a small-paritmete: is present, use c a n  be mddc of sp2cic11 

techniques for such problems (e. g. I von Zeipcl's method* ', Poincarc's 

16 small -parameter expansion method ) but they will not be presented here, 

Instead of developing canonical perturbation theory and fIclr:i:!ton- 

Jacobi perturbation theory seperately,  they will be derived togelher since 

the  derivations a re  essent ia l ly  the  same. Moreover, when these techniques 

a r e  applied, it may be advantageous to u s e  a combination of the two. The 

basic idea in both procedures is to make t h e  integration problem trivial by 

performing a sequence of transformations which converge to "natural " vari- 

ables for the problem (e. g.  , a set of canonic constants).  

I 

I 
t 

Lst {H( x I  A ,  t), x 8  A }  be a Hamiltonian system. ,Suppose that 

n 

! 

I 

where A complete solution of the  H-J equation for H is known. In  

practice8 the finite sum is sometimes replaced by an infinite sum (e. g. 8 d 

-power se r i e s  or Fourier expansion for H-H ) but the  procedure i s  the same 

0 

0 

as for a finite sum. 

Since the  H-J theory assumes the set (x,  p, t )  Is the  independent 

set, the general equations fer a canonical transformation a r e  Equations (45),  
/ 

Lo. 8 



as x -  
q1 Bpi 

( sa )  

9 

n 

i - 1  

K i- - OS t H = ( j ; - ;  BS + N o )  - C H i .  
a t  

0 Let S (x8 a ,  t )  be a complete solution of t!le H-J equation for H * 
0' 

8 t ) = O ,  (51) 
aso 

4- Ho{x8 ax - aso 
a t  

and let  the system 

(i = I , . .  .,n) 

be the general solution of Hamilton's equations for H 

f Q , @ 3 Is the set  of canonic constants determined by the solution of 

Equatim (51). From the last  of Equations (50) 

where the s e t  
0' 

Thus, tho result is a new Hamiltonian system I K,  a ,  f3). 



'5 f 

1 
3 ' h t . t ~  ~ t t ~  two h s i c  ways Of attacking the* "IICW"' f I < ~ i ~ t ~ I t i ~ l r l < i t ~  1 1 

problem deftried by Cqustlons ( 5 2 )  and (53). Cnrtoniciil perturbttioii tht.rsry 

Involvcls tho Integration of Equatlons (53 )  whereas H-J pl%-turbetion theory 

involves the integration of the H-J equation for the Hamil tonian  K. 

1 

i 

1 Let S (a ,  p, t ) be a complete solution of Equation (54): Applying the 

general canonical transformation Equations (50)  again leads t o  the following 

expressions. 

( t  = I , . .  .,n) - %S1 
bf - Ba I 

n n I 
+ KO) - C Hi -C Hi. 

I i i 9 2  l = 2  

The set (a ,  b 1 is a set of canonlc constants for the problem defined by i 

Ho - H,' and from lacobi's theorem, the set of equotbns 
- f 



1 0 
X i ( a ,  b, t )  2 X [ . ( a 8  b, t ) ,  P ( d ,  b, t ) ,  t J  

(i = 1, . . . , 11) 

1 Xi(a,  b, t )  E X o [ a ( a ,  b, t ) ,  p ( a ,  b, t ) ,  t )  

I 

should be a valid approximation to the general solution of the Hamilton's 

equations for the total  Hamiltonian. 

# 

! 

n I 

- i  If the  effects of C H are required, the same procedure can  
! 

i 
' 1 = 2  

t be applied to H2, H3, etc. One of the most powerful a spec t s  of a 

Hamiltonian perturbation theory is that one need not start  a l l  over when 

a higher order apprc.ximation or the effect of a new perturbation is required. 
i 



In the following discussion,  the theory outlined i n  Part I wi l l  be oppfirrf 

t o  the problem of obtaining approximate anaiytical solutions to  the optimal icc - 

lhrust trajectory problem. 

of the coast-arc problem (i. e. , the optimal trajectory problem when thrust is 

zero) is obtained for both the two dimensional polar representation of the optindl 

A base solution which rcprescnts the total solu:~~):t 

trajectory and for a three dimensional spherical representation. The t i n e  rates 

of change of the base canonic constants  for the planar problem when the thrust 

effects a re  included are  determined also. 

11. 1 Introduction 

. Before the theory of Part I can be applied, the optimal trajectory problem 

must  be expressed a s  a well-defined Hamiltonian system. That is, the given 

variational problem m u s t  be reduced to a system of first-order ordinary differen- 

t i a l  equations defined by a Hamiltonian function and a set of 2n t 2 boundary 

conditions. 

Consider the  problem of extremizing the  integral 

r tf 

subject  to the constraints 

X 



and the yeonietrlc boundary con 

I.1) M ( x , t )  = 0 ,  (t = 1 , .  . p ~ n )  i f  f 

where x is B n-vector of s t a t e  variables and u is a rn-vector of control 

variables. The problem c a n  be formulated a s  a Lagrange problem" In the 

calculus of variations by introducing a s e t  of unknown multipliers X l , . ' . ' x  , n 

and forming the augmented functional 

tf n 
I = lt G(x, t )  + C XJXi - f i ) ]d t ,  ( 5 )  

i = l  
0 

If I is t o  be a n  extrema1 with respect to the choice of u(t), the following 

necessary conditions m u s t  b e  satisfied: 

(i) Lagrange's equations mus t  be satisfied everywhere in the interval, 

t s t z t  L e . ,  
0 f '  

t i  = I , . . . , n )  



( i i )  a sot  of transvcrsdli:y conditions, say: 

milst bc satisfied a t  the  terminal time. 

The system of Equations ( Z ) ,  ( 6 ) ,  and (7)  can  bc expressed LIS a systcm 

of first-order equations by defining a generalized Haniiltonian function 

n 

i = l  
H * ( X ,  U I  k8 t )  Z E kigi - L(x8 > ; r  U I  x8 t) ,  (9 )  

and then developing Hamilton's equations, 1. e. , 

( i  = I 8  ... ,nj BH* 8H* x = -  
= -- Bx i i %Xi 

Equation (7) and Equation (9) can  be combined to yield. 

( i  m . 1 , .  . . 8 m) (1 ' )  

In addition, the  Weiers t rass  condition' must be sat isf ied i f  the  functional 

defined by Equation (1) is to be a minimum. This l eads  to the further require- 

for all admissible 6u and 6u If the inequality holds in Equation (121, the 

extrema1 is a minimizing trajectory. If the equality holds over any portion of 
i 1 '  



.w- 

In most optimal trajectory problems, Equations ( 1  1 )  and ( 1  2) cair be used 

to express the control variables a s  functions of t h e  state variables and t!ic 

Lagrange mu1tiFlier-s say: 

Consider the composite function 

By Equations,( 11 ), it follows that: 

s ince  aH*/au, = 0 for 1 = 1, . . . , m. Thus, Equations (1  5) and (16).are 

Hamilton's equations for the  Hamiltonian of Equation (1 4). Equation (1 4) Is 

a function of only the R state v a r i a a e s ,  the n Lagrange multipliers, and 

time. 

Therefore, Equations (15). and (16) along with the boundary conditions of 

Equations (31, (4), ana ( 8 )  represent a well-de'f ing Hamiltonian system des- 

bed by the "generalized c 



lfainiltonitln mechanics are now svailabtc for the optimal trtijcciary pruhltant. 

11. 2 The f’laiiar Problem 

Consider the problem of minimizing the time of flight of a vehicle p o w c r d  

by a continuously-thrusting engine where the thrust and mass-flow rate arc 

assumed constant. Although not a necessary assumption in  what follows, it will 

generally be assumed that  the thrust is small when compared with the  gravitdtional 

force of attraction (e. g. , a near-earth low-thrust mission). In th i s  section, the 
- - - .  

- -  s t a f e 5 f  the-vehicE will  be described by a polar coordinate system. 

&2A The Planar Base Solution 

The equations of motion for the vehicle are (see Fig. 1): 

. 
r = u  

V 0 = -  
r 

. 
‘cosa UV v = -- .+- 

r m 

m i-- m + m o ( t  - to ) .  

The generalized Hamiltonian function c a n  be written as. 

0 

where the functions f ( x ,  u ,  t) (i = 1 8  . . . , 4) represent. the right-hand sides i 

of Cquatlons (17) and the  variables xi (1 = 1, . . . , 4) represent t he  state w r l -  

ablcs r ,  0 ,  u ,  v . The control, a ,  ’can be expressed as a function of t h e  



‘yhen, on substitution of Cquiitions (20 )  into Equatian ( i l l ) ,  a new Hbmil toninn  

H ( x ,  h,  t )  is determined 

Equation ( 2 2 )  c a n  be partitioned into a base  Hamiltonian H 

Hamiltonian, ’/K-, m 3  L e . ,  

and a perturbing 
0 

H E Ho - q-. m 

If the  thrust8 F 8  is zero, then H = Ho. Physically, H is the variational 

Hamiltonian for the coast-arc problem and it is well known that  closed-form 

solutions exist for this  problem ’” 18’  19, However, to apply canonical per- 

0 

SttFbation theory one  must have a sulution to the Hamilton-jacobi (E-J) equation 

for this problem in terms of eight canonic constants. 

before writing the H-J equation for Ho, it will be advantageous to C O t I S i d S  - 
b A physical interpretation of the Droblem. Since thrust IS zero. the  



Layrange multipliers. f-ience, for tlJ@ base pt-oblcm, the c w t  ~y and cigi.*Q!ar 

momenturn of the crbit should be constants of the motion, Also ,  €Ict does 

not contain time explicitly, so 

0 docs  not appear t.xplicitiy i n  H , so the conjuyatr vdrlablc for 0 

should be a constant of the motion. Thus, four constants  af the  motlon are  

Ilo should bc a constant of the mot [on: and 

0 

readily apparent. To apply the H-J theory m o s t  effectively, a simple cantn-  

ical transfcrmation should be used to make the above-mentioned constants of 

t he  motion the new momenta, 1. e . ,  {a  1, a 2 ,  0 3 ,  a h  , s ince  then the fob* 

remaining constants  of the motion will follow by differentiation of the gener- 

at ing function. 

If t he  H-J equation for H i s  written with the x as generalized co- 
0 i 

ordinates and the Xi a s  generalized momepta ( a s  is the case i n  Equation ( 2 2 ) ) ,  

then advantage cannot be taken of t h e  constantsof t he  motion mentioired above. 

However, i f  half of the  momenta are.switched to coordinates and v ice  versa by 

use of a simple transformation ( see  Equation (I. 43)). i. e. , 



Substltullon of Equations (24)  into €I r c s d t s  in  the following ih:ntltunrrln 
0 

In  order to find a base solution, a canorical  transformation from t h e  I g ,  p )  

set to a ncw CQI P 1 set must bc performed such th;t the new variables will 

be constants  of the  motion. The generating function for such a transformation 

c a n  be obtained by solving the €1-J equation. 

The H-J equation for Hb is 

as 8s - 9 H A ( q ,  ap) = 0 .  8t  

Since t aad q 

and Bs , a t  

only appear once each i n  Equation ( 2 6 ) ,  and only in  the  form 2 

it is reasonable to assume a partial separation of variables for as 
aq2 

By substituting EGuation (271 into Equation (26) and using independence argu- 

ments, the following expressions a re  obtained 

where a and a are constants. Substitution of Equations ( 2 8 )  into Equation 

( 2 7 )  leads to 

1 2 ,  



s -= c t i c , q  4 s.etq , q . ,  q 1 .  li J -  I 1 . 2  I .5 4 

t'or a conipletc solution of Equation ( L b ) ,  f r u r  i n - i ~ ~ p e n : i c ~ ~ t  w i l S t J n t : r  

required. T h u s ,  two more constants arc nccessary. As previously t ? i ~ 4 n t 1 ~ 3 i ~ ~ d ,  

knowlcdgc of the two-body problem could bc USL. .~  to dcfinc the oth<.r :\-:e>, 1. i'. , 

t he  energy and angular momentum of the orbit. However,  thcsc constdnts cd:i 

a l s o  he obtained by inspecting the characteristic system of rho H-1 cqudtion, 

which is now a function of only three variables, i. e. , 

dpi c_ E -- af ( i  = 1,3,'1) dr aa ' 
1 

where T is a n  arbitrary parameter. Note that for the c a s e  t = t ,  the 

characteristic equations are  just the  Hamilton's equations associated with 

the  H-J equation. 
dq a 

To obtain the angular momentum integral, consider the - ' and dt dF 1 
4 - 

dr equations for the  characteristic system, i. e. , 

4 dP p3p4 25 = Pi; 
q1 dr dr 

Note that 

dP dql 
dql dr p3 

dP4 p4 

dq 1 q 1  

- = 4  - 
dq) 

. Substiti*tlon of this resul t  into so from Equations (31): - = - - 
Equation (32) leads 

dr  

simple integration which gtves 



To obtaln the energy integral, Equation'( 33)  is used itlong with ilia 

characteristic equations 

Noting that 

3 and obtaining - by eliminating T in Equations (34)leads to another . dql  
.simple integration which gives 

2 
a 

2 - 3  + & '  
a 4 = -p3 

.The four constants  required for the complete solution have now been 

obtained. The only remaining problem is to incorporate them into the gene+ 

at ing fitnction of Equation (27). This can  be effected by considering the 

following integrable Pfaff differential equation 
* -  

where 



generating function S s  is necessarily of the form 

s* = p (c: ) 4  4- P,(c:,)S4 -t S'(Cll) d 3 1  3 

where S'(q ) is t o  be determined. In the first of Equations ( 3 7 ) ,  a f sign 

is included sir?ce Equation (35 )  is a n  equation involving p 

1 
2 Physically, this 
3' 

corresponds to the radius increasing from perigee to apogee (pg E r 2 0 )  and 

decreasing from apogee to perigee ( p  f r 5 0 ) .  
~- 

3 
as* 

To determine S' (q ), consider - as  defined by the  H-J equation. 
1 3s Q From the  argument leading to the form of Equation (38) ,  the terms of -- 

which contain q and q c a n  be omitted, so then 

1 

aq 1 

3 4 

which does  not contain q or q 
3 4' 

1' is tha t  portion of 
Bq 1 

Integration of Equation (39)  yields 

I -1 
f a s i n  

2 

The integration of Equation (39),irirolves an assumption on the sign of u 

d 

* -  - .-* ..c*-.. - - -*--..-cm - -,..-. v-. e- - c -.rlol.I1C.- .--- -- --e-- ~ - 



energy i s  negative ( i .  e .  , circular and elliptical conditions). 

functions c a n  a l s o  be integrated for t h e  parabolic and hypc’rboiic cclsv:;. 

Othcr S‘(ql 1 

Consideration of Equations ( 2 9 ) ,  ( 3 8 ) ,  and (40) then cj1vc.s the f ; c ? r i c ~ r ~ ~ : ~ i w  

function for the base solution: 

By Jacobi’s Theorem, t h e  remaining canonic constants of the uiotion are  obta!ned 

by differentiating the generating function with respect t o  each of t h e  G ‘s , i. e .  , I 

p, - . As functions of the  original variables (see Equations ( 2 4 ) )  the  total 
i aa 

set of canonic constants are: 

2 

a = X 2  2 

a TV 3 



2 a 4 r u  L ( p  L - a a L )  . 
4 3  

The set { a ,  $ 1  represents the closed-form solution t o  the coast-arc 

problem. The subset {a 3, a 4 ,  $2 defines the Keplerlan orhit, and the 

subset {a 

a coast-arc. However, Equations (42) possess two singularitles: f 5 u = 0 

a 2 ,  $ , p 1 1 '  3 4  
defines the  solution for the Lagrange multipliers on 

_ _  - - -  - - 
-- and energy = -a = 0. Thus, the class of missions to which the set { a ,  'p I 

is applicable is somewhat restricted (i. e. , elliptical trajectories with nonzero 

eccentricity). Recent attempts to obtain another base  solution free of the  

r = 0 singularity have been successful  and the new solution is now being 

4 

studied. The resul ts  of this  analysis  will be presented a t  a la ter  date. 

IL 28 The Canonic Perturbation Equations 

The solution to the  problem defined by the  total  Hamiltonian of Equation 

(23) may now be attacked by canonical perturbation theory. The perturbing 

Hamiltonian is 

m (43) 

To develop the canonic perturbation equationsI 1. e. , t h e  t lme rates of change 

of the  base canonic constants  , ' the perturbing Hamiltonian must be expressed 

as a function of the canonic constants  and time. Phus, t h e  canonic constant 

expressions a (x, A, t), p(x, A,  t) 1 of Equations (42) must bo inverted to - 



Since the  perturbing Hamiltonian is only a function of X h and m ,  3' 4 '  

and p equations need to be invcrtcd to obtain ( X ( c , p , r j ,  
1 '  P3' 4 3 only thc f3 

X4(a, p, r ) ,  t(r, n ,  p)}  . The p -equation actual ly  defines the irnrdiclt 

relationship r(t) which will be studied later. 

1 

_~. 

Recalling from the  first of Equations (37) that  p ( a  a 4 ,  r ) ,  t he  p3- 
3 3' 

equation can be rearranged to give 

2 
I" - P a 4 3  

2 2 a z  - h  5 9 = (s,)P3 f ( t 
'1 '3 p3 P3(P - Q * Q 3 )  

4 4  



In many optimal trajectory problems (assuming a fixed initial state) t ! x  fsna1 

value of 0 is arbitrary. 

for such a mission. Then, Equation (44)  would lose the A -term and Equation (4'1: 

would lose the B -term. 

Thus, from t he  transvcrsality conditlons, X 2  = r - 2  ' 5  0 

3 

2 

Cquatior. (45)  is of the form q ( a ,  p, q ) whereas Equation ( 4 4 )  rontairrs . 3  1 

Thus, after substituting Equation (45)  i n  Equation (441, the fo:lowing ex- q3. 

pression is obtained. 

The f3 -equation gives u s  L 

Then the perturbing Hamiltonian can be expressed as 

where 



put:urt.ation cquatlons &re given by 

The partial derivatives of + with respect to a and g can be determined by 

applying (ii) of the implicit function theorem ( s e e  Section I .  2A].  That .sI the 

1 i 

8, -equation defines a function 

from which the desired partial derivations can be obtained by solving 

&k& +, 
8 r  88, 

The solutions of 

c 



where 

2 2 2  2 . 2  2 2  2 
4 3 4  1 3 4  

D f Q ( p  - a a ) q  t p ( 5 a 3 a 4  - 6p ) q l  + a 3 (  3p - 2c a ). 

Thus the right-hand sides of Equations (50) are now well-defined functions of 

[a ,  p, q1 1. Application of the chain rule to the left-hand sides gives 



, 

1 ‘’srfttist? of 1 IC’ change of tncfrponrirnt varlstdt. frorn t r . t  q I I , ; .$ : ;  
1 ’  

(53) n i ~  ttvt lrr canonical form. I f  B flrtthcr linmiftunian analyst:. 1 3  ~ L > L I $ , ; ,  

tho canonical form can I;c rcyalned by roworking the problcm with  r o s  t t t ~ ?  

independent varlable from the bcgfnning. ThIs presents only a siiuht ninciifi 

cation to the base qenerdting solution and canonic constants. 

The cxpandcd form of Equations (53) a re  given i n  Appendix A. 

D. 3 A B a  se Solution i n  S ~ h e r f c a l  Coordinates 

The base solution which will be developed i n  this  section IS J sllqht 

modification of a base solution formed by Miner 20 ,  The main diiferencu is 

in  the u s e  of a simple cancnical transformation and the method for integrattcn 

of the  generating function. 
t 

+ 

Consider a spherical coordinate system (r, 8, 4) defined by the trans- 

formation equations 

x = r COS e COS 4 . 

y .= r cos 8 sin cp 

t = . t s i n  8 .  

The equations of motion in B modified spherical system are (see Fig. 2): 

. W 2 2  
v P -- sec e tan e t rk 1 sin T cos e - cos t s in  6 cos r* 1 3 r 



\5’ 

i - 2  r cos 2 0 

where x*  J 5 -  + and the mass, m, is treated as a statc variable. 

Note that this coordinate system takes  advantage of the angular momentum 

lntegril by dcfining w = r I$ cos 6 (instead of the usual w = r i  cos 0 ) .  

The variational Hamiltonian for this  problem is 

2 2 

2 z z  - 12 
r 

- kz (!$ sec e t a n  e )  t xqu w 
2 

H* E X (v 
r 

2 + 3  2 ’ r3 t cos 6 

A (x, A )  , V W - x c r  + “ 6  2 2 7 m + I - -  
rz r cos 6 

where A (x, X) is t he  coefficient of ; Since interest here is only in  m 

forming a base solution, the expression for. A (x, 1) will not be developed. 

Let H+ be wri t t enas  

’ H* 2 H, i A ( x ,  A ) ,  

where H, Is the base Hamiltonian. Note that neither t, 9, nor m appear 

explicitly in No . Thus, their conjugate momenta (L. e. , 
consiants of the motion so the  simple transformation of those valrables wkll be 

H I k k 1 are o 6’ 7 

the  identity transformation. TO make use of the  known iAegrals  of the two- 

body problem, three of the  state variables must bb tranrfomcd to m~?mc~nt& arPd 

vicc vorsa wlth three of the Laprango multipliers. Thds, define: 



Then, application of the simyle transforn~ation of Equation ( I .  43 ) ,  1. c.  , 

3 7 

i =  1 i = 4  
s = . -  c Xiqi i- r x F 

i i '  

with 

as BS Pi = - -  
axi a% 

( 1  = 1 ,  2, 3 )  Xi = - 

8s - -  
Bpi 

q i  - ( i  = 4, 5 ,  6 ,  7 )  

gives 
I 

The new base Hainiltonian i s  



where S(q, a, t )  is to be determined a s  a function of seven indepctxlurrt 

constants I Q  , .. . I c 7 ) .  Since '' a , and -..- as 

and neither t 8  q68 nor q, appear at al l  in tho H-J equation, i t  I S  reasom- 

ble to assume a partial separation of variables 

appear only once 
Bq 7 Bt Bqg 

Then substitution of Equation (59) into Equation (58) gives 

SO 

Substitution of Equation (60) into Equation (58 )  and multiplication by qf olws 



follows that 

- E - -  
4 *  

ar = o  ‘+ p3 = constant Q 

where pg I - as* . Thus ,  the - - terms in Equation (61) can be replaced 

dP3 

aq3 dr 

. .  
as*: 

a93 aq3 
by a 4 *  

Consider the characterist ic equations for p E - ”* and q5 , i . e . ,  
a q L  

- dPz -- - - -a 2 2  sec q t a n q 5  4 .  5 Bq2 d r  

- = - -  - P2 
dq5 8F 
d r  

Application.of the  chain rule to dPZ - gives 
d r  

2 z 
pi -2a2 4.  1 sec q 5 t anq5 .dq5 + a 5 .  

where knowledge of the two-body problem has been used as 8 guide in 

picking the constant of integration to be a i  instead of a Then, 5 ’  



or 

or 

taking advantage of Equation (62) : 

i 

Upon integration, the energy integral is obtained: 

(63) 

Six constants of the motion have now &en obtai'ned. Jacobi's theorem 

requires seven for a complete solution to the base solution. The final constant 

can be obtained by substituting.Equations (62) and (63) into Equation (41) and 

notlns that another separation of variables is poss1blQ 1. e. , Equation (61) can 

be written a s  



Again making use  of the two-body problem, le t  the new constant be dcnotcd i 
by Q a Then, 7 5 '  

2 2 2 
5' - a 4 q 2  sec q t a n q  - a a sec q as" asii a a  = - - -  

7 5  8q5 aq2 5 5 2 4  

where each s ide  of Equation (54) m u s t  be constant since the left -hand s ide  

is only a function of q and q * and the  rlght-hand s ide  is only a function 
1 4' 

5' of q2 and q 

) mus t  be determined i n  
2' q5 

The functions S ' (q l ,  q4) and S"(q 

order to define the generating function S . To find S' and S", two Pfaff 

differential equations must  be integrated, i. e. , 

BS 

and, 167 1 4 



a 
5 

- Q u sec q 
2 4  

2 s }  *., 
2 - u4q2 sec q tan q 5 

Thus, Equations (67) are of the functional form 

As shown in Section I. 28, since &% onlydepends upon q4a& - 8s" only 
aq2 

depends upon q5, then 

e 
S' = R1!a4) q1 + So(q4) 



2 

1 -1 t a s i n  ( 
7 

and a 

As in the  planar case, Equations (69) a re  only valid €or elliptical motion. 

Substitution of Equations (68) into Equation (65) leads  to the generating 

function for the base problem: 

a s i n q  
f : 5 

f 7 



= = Po 2 

IC ' 1 - j  h4b1 2 - P7"' + q 4 P 1 P 4  2 

t p sec q 



2 (a7a4 f a a a ) 

5 t a n q  2 2  t 
P 2 b 5  - a 4 )  

Thc set t u ,  f3 1 represents the solution to the coast -arc pmblom in 

sphcrlcai coordinates. As with the planar problem, Equatlans (711 passass 

slngularfttes at c E p1 = 0 and energy = 0. Thus. this solution t s  d v o  

rostrtctd to cll~ptical traioctorlos on which z 0 CK c 0. 



! 

i 
t 

I 

cussed in Part 1. In Part 11, the  application of the theory t 3  th,, c\,,*:r:,dl 110- 

jcctory problem Is  described, and a b s e  solution fer the plctnLii problcrn, us 

formulated in  polar coordinates, is obtained and the timc rates of change of 

the base canonic constants for the planar problem due t o  the effects of the 

engine thrust a r e  developed. Finally, a modification of the spherical coor- 

dinate system base solution given by Miner", is presented. 

m. 2 Conclusions and Recommendations I 

Based on the results obtained in  the previous sect ions,  it appears 

that  canonical perturbation theory c a n  be used to obtain approximate analytlc 

solutions to the equations which govern the optimal motion of a continuously- 
e 

thrusting space vehicle. The constants defined by t h e  base solution r a n  b@ 

used to describe the  coas t  or zero-thrust portions of the trajectory. The 

oquatlons which govern the t ime rates of change of these constants under tho 

e f f e c t s  of the thrust c a n  be used for numerical studies of the vehicle mutlon. 

Ifowever,, the base solutions presonted contain singularittes for rhc 

cases whore tho radial velocity and the encryy are equal to zero. Tho 

slnquIoritrcs restrict the base solutton to elliptict*I orbits, only. A% 8 

81 



orbital trensfars. 

It Is tocommended that future invcstlgatfons tit. tiircttrll towsclida 

obtaining a more general base solution which i s  valid for IJOfh cll ipticat ami 

clrcular orbits. Conslderatlon should bc  givon also. to obtatning solutions 

whlch ate valid for both parnboIic and hyperbolic trajectclry conditions. 

Flnslly, the Hamilton-Jacobf equation for the remaining pcrtusbirtg l!c~rr!l!oninn 

should be examined in an effort to incorporate the effects of the thrusting 

engine ln the analytical solution. 



FIG. I. Planar Represen to tion 

FIG. 2. Spherical Representofton 
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by Equations [XI-431, (11-53j, and (11-52'), respectively. by Equations [XI-431, (11-53j, and (11-52'), respectively. 
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